skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Basereh, Sina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Precast concrete shear walls with unbonded post-tensioning, which resist seismic loads have attracted the attention of researchers over the past 20 years. This study provides a database of a special subset of precast concrete shear walls tested under monotonic or cyclic loading: rocking walls, hybrid walls, and walls with end columns. These shear walls experience joint opening, undergo rocking motion over the foundation, and utilize unbonded post-tensioning to self-center after load removal. Seismic energy is dissipated in distinct ways that vary from nonlinearity of concrete and post-tensioning strands (rocking walls) to yielding of mild steel reinforcement or external energy dissipaters (hybrid walls and walls with end columns). The experimental drift capacity, strength, and damage sequence of walls from the literature were compiled. Onsets of cover concrete spalling, yielding of energy dissipaters, yielding of post-tensioning strands, fracture of energy dissipaters, and crushing of confined concrete were reported. ACI guidance on shear walls were evaluated by comparing the lateral drift and strength measured by testing and predicted by ACI. 
    more » « less
  2. null (Ed.)
    Precast concrete shear walls with unbonded post-tensioning, which resist seismic loads have attracted the attention of researchers over the past 20 years. This study provides a database of a special subset of precast concrete shear walls tested under monotonic or cyclic loading: rocking walls, hybrid walls, and walls with end columns. These shear walls experience joint opening, undergo rocking motion over the foundation, and utilize unbonded post-tensioning to self-center after load removal. Seismic energy is dissipated in distinct ways that vary from nonlinearity of concrete and post-tensioning strands (rocking walls) to yielding of mild steel reinforcement or external energy dissipaters (hybrid walls and walls with end columns). The experimental drift capacity, strength, and damage sequence of walls from the literature were compiled. Onsets of cover concrete spalling, yielding of energy dissipaters, yielding of post-tensioning strands, fracture of energy dissipaters, and crushing of confined concrete were reported. ACI guidance on shear walls were evaluated by comparing the lateral drift and strength measured by testing and predicted by ACI. 
    more » « less